Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Regul Toxicol Pharmacol ; 149: 105622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588771

RESUMEN

Novel medical devices must conform to medical device regulation (MDR) for European market entry. Likewise, chemicals must comply with the Registration, Evaluation, Authorization and Restriction of Chemicals (REACh) regulation. Both pose regulatory challenges for manufacturers, but concordantly provide an approach for transferring data from an already registered device or compound to the one undergoing accreditation. This is called equivalence for medical devices and read-across for chemicals. Although read-across is not explicitly prohibited in the process of medical device accreditation, it is usually not performed due to a lack of guidance and acceptance criteria from the authorities. Nonetheless, a scientifically justified read-across of material-based endpoints, as well as toxicological assessment of chemical aspects, such as extractables and leachables, can prevent failure of MDR device equivalence if data is lacking. Further, read-across, if applied correctly can facilitate the standard MDR conformity assessment. The need for read-across within medical device registration should let authorities to reconsider device accreditation and the formulation of respective guidance documents. Acceptance criteria like in the European Chemicals Agency (ECHA) read-across assessment framework (RAAF) are needed. This can reduce the impact of the MDR and help with keeping high European innovation device rate, beneficial for medical device patients.


Asunto(s)
Equipos y Suministros , Equipos y Suministros/normas , Humanos , Medición de Riesgo , Legislación de Dispositivos Médicos , Europa (Continente) , Aprobación de Recursos/normas , Aprobación de Recursos/legislación & jurisprudencia , Animales
2.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38400413

RESUMEN

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

3.
Neuromodulation ; 27(3): 489-499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37002052

RESUMEN

OBJECTIVES: Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS: Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS: In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION: Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Corteza Sensoriomotora , Núcleo Subtalámico , Ratas , Masculino , Animales , Núcleo Subtalámico/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Ratas Sprague-Dawley
4.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237696

RESUMEN

Delamination at heterogeneous material interfaces is one of the most prominent failure modes in active implantable medical devices (AIMDs). A well-known example of an AIMD is the cochlear implant (CI). In mechanical engineering, a multitude of testing procedures are known whose data can be used for detailed modeling with respect to digital twins. Detailed, complex models for digital twins are still lacking in bioengineering since body fluid infiltration occurs both into the polymer substrate and along the metal-polymer interfaces. For a newly developed test for an AIMD or CI composed of silicone rubber and metal wiring or electrodes, a mathematical model of these mechanisms is presented. It provides a better understanding of the failure mechanisms in such devices and their validation against real-life data. The implementation utilizes COMSOL Multiphysics®, consisting of a volume diffusion part and models for interface diffusion (and delamination). For a set of experimental data, the necessary diffusion coefficient could be derived. A subsequent comparison of experimental and modeling results showed a good qualitative and functional match. The delamination model follows a mechanical approach. The results of the interface diffusion model, which follows a substance transport-based approach, show a very good approximation to the results of previous experiments.

5.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566935

RESUMEN

The gold standard for the partial restoration of sensorineural hearing loss is cochlear implant surgery, which restores patients' speech comprehension. The remaining limitations, e.g., music perception, are partly due to a gap between cochlear implant electrodes and the auditory nerve cells in the modiolus of the inner ear. Reducing this gap will most likely lead to improved cochlear implant performance. To achieve this, a bending or curling mechanism in the electrode array is discussed. We propose a silicone rubber-hydrogel actuator where the hydrogel forms a percolating network in the dorsal silicone rubber compartment of the electrode array to exert bending forces at low volume swelling ratios. A material study of suitable polymers (medical-grade PDMS and hydrogels), including parametrized bending curvature measurements, is presented. The curvature radii measured meet the anatomical needs for positioning electrodes very closely to the modiolus. Besides stage-one biocompatibility according to ISO 10993-5, we also developed and validated a simplified mathematical model for designing hydrogel-actuated CI with modiolar hugging functionality.

6.
Neural Netw ; 146: 334-340, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34923220

RESUMEN

In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal ganglia and cortical circuits are altered, which may be useful as biomarker for adaptive deep brain stimulation. We investigated whether changes in the spectral power of oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after injection of the dopamine (DA) receptor antagonist haloperidol (HALO) would be similar to those observed in Parkinson disease. Thereafter, we tested whether a convolutional neural network (CNN) model would identify brain signal alterations in this acute model of parkinsonism. A sixteen channel surface micro-electrocorticogram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere under general anaesthesia in rats. Seven days after surgery, micro ECoG was recorded in individual free moving rats in three conditions: (1) basal activity, (2) after injection of HALO (0.5 mg/kg), and (3) with additional injection of apomorphine (APO) (1 mg/kg). Furthermore, a CNN-based classification consisting of 23,530 parameters was applied on the raw data. HALO injection decreased oscillatory theta band activity (4-8 Hz) and enhanced beta (12-30 Hz) and gamma (30-100 Hz) in MCtx and SMCtx, which was compensated after APO injection (P ¡ 0.001). Evaluation of classification performance of the CNN model provided accuracy of 92%, sensitivity of 90% and specificity of 93% on one-dimensional signals. The CNN proposed model requires a minimum of sensory hardware and may be integrated into future research on therapeutic devices for Parkinson disease, such as adaptive closed loop stimulation, thus contributing to more efficient way of treatment.


Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Ganglios Basales , Redes Neurales de la Computación , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas
7.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34947600

RESUMEN

Galinstan, a liquid metal at room temperature, is a promising material for use in flexible electronics. Since it has been successfully integrated in devices for external use, e.g., as stretchable electronic skin in tactile sensation, the possibility of using galinstan for flexible implant technology comes to mind. Usage of liquid metals in a flexible implant would reduce the risk of broken conductive pathways in the implants and therefore reduce the possibility of implant failure. However, the biocompatibility of the liquid metal under study, i.e., galinstan, has not been proven in state-of-the-art literature. Therefore, in this paper, a material combination of galinstan and silicone rubber is under investigation regarding the success of sterilization methods and to establish biocompatibility testing for an in vivo application. First cell biocompatibility tests (WST-1 assays) and cell toxicity tests (LDH assays) show promising results regarding biocompatibility. This work paves the way towards the successful integration of stretchable devices using liquid metals embedded in a silicone rubber encapsulant for flexible surface electro-cortical grid arrays and other flexible implants.

8.
Micromachines (Basel) ; 12(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201129

RESUMEN

The most common failure mode of implantable neural implants has been delamination of layers in compound structures and encapsulations in a wet body environment. Current knowledge of failure mechanisms of adhesion and its standardized test procedures are lacking and must be established. This study demonstrated a combined experimental and numerical method to investigate the residual stresses from one of the most common encapsulation materials, silicone rubber (polydimethylsiloxane-PDMS) during the coating process at elevated temperatures. Measured shrinkage of test specimen correlates well to a modified shrinkage model using thermal-mechanical finite element method (FEM) simulation. All simulated interfacial stresses show stress concentration at the PDMS coating front depending on curing temperature and coating thickness, while Griffith's condition estimated the delamination of the coating front. This study emphasizes the understanding of the interfacial delamination giving the possibility to predict failure mode of neural interface.

9.
Pharmaceutics ; 13(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068978

RESUMEN

In order to deliver an aerosolized drug in a breath-triggered manner, the initiation of the patient's inspiration needs to be detected. The best-known systems monitoring breathing patterns are based on flow sensors. However, due to their large dead space volume, flow sensors are not advisable for monitoring the breathing of (preterm) neonates. Newly-developed respiratory sensors, especially when contact-based (invasive), can be tested on (preterm) neonates only with great effort due to clinical and ethical hurdles. Therefore, a physiological model is highly desirable to validate these sensors. For developing such a system, abdominal movement data of (preterm) neonates are required. We recorded time sequences of five preterm neonates' abdominal movements with a time-of-flight camera and successfully extracted various breathing patterns and respiratory parameters. Several characteristic breathing patterns, such as forced breathing, sighing, apnea and crying, were identified from the movement data. Respiratory parameters, such as duration of inspiration and expiration, as well as respiratory rate and breathing movement over time, were also extracted. This work demonstrated that respiratory parameters of preterm neonates can be determined without contact. Therefore, such a system can be used for breathing detection to provide a trigger signal for breath-triggered drug release systems. Furthermore, based on the recorded data, a physiological abdominal movement model of preterm neonates can now be developed.

10.
Pharmaceutics ; 13(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064425

RESUMEN

A major disadvantage of inhalation therapy with continuous drug delivery is the loss of medication during expiration. Developing a breath-triggered drug release system can highly decrease this loss. However, there is currently no breath-triggered drug release directly inside the patient interface (nasal prong) for preterm neonates available due to their high breathing frequency, short inspiration time and low tidal volume. Therefore, a nasal prong with an integrated valve releasing aerosol directly inside the patient interface increasing inhaled aerosol efficiency is desirable. We integrated a miniaturized aerosol valve into a nasal prong, controlled by a double-stroke cylinder. Breathing was simulated using a test lung for preterm neonates on CPAP respiratory support. The inhalation flow served as a trigger signal for the valve, releasing humidified surfactant. Particle detection was performed gravimetrically (filter) and optically (light extinction). The integrated miniaturized aerosol valve enabled breath-triggered drug release inside the patient interface with an aerosol valve response time of <25 ms. By breath-triggered release of the pharmaceutical aerosol as a bolus during inhalation, the inhaled aerosol efficiency was increased by a factor of >4 compared to non-triggered release. This novel nasal prong with integrated valve allows breath-triggered drug release directly inside the nasal prong with short response time.

11.
Nanomaterials (Basel) ; 11(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920671

RESUMEN

Current developments of electrodes for neural recordings address the need of biomedical research and applications for high spatial acuity in electrophysiological recordings. One approach is the usage of novel materials to overcome electrochemical constraints of state-of-the-art metal contacts. Promising materials are carbon nanotubes (CNTs), as they are well suited for neural interfacing. The CNTs increase the effective contact surface area to decrease high impedances while keeping minimal contact diameters. However, to prevent toxic dissolving of CNTs, an appropriate surface coating is required. In this study, we tested flexible surface electrocorticographic (ECoG) electrodes, coated with a CNT-silicone rubber composite. First, we describe the outcome of surface etching, which exposes the contact nanostructure while anchoring the CNTs. Subsequently, the ECoG electrodes were used for acute in vivo recordings of auditory evoked potentials from the guinea pig auditory cortex. Both the impedances and the signal-to-noise ratios of coated contacts were similar to uncoated gold contacts. This novel approach for a safe application of CNTs, embedded in a surface etched silicone rubber, showed promising results but did not lead to improvements during acute recordings.

12.
Bioengineering (Basel) ; 9(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35049719

RESUMEN

The ingress of body fluids or their constituents is one of the main causes of failure of active implantable medical devices (AIMDs). Progressive delamination takes its origin at the junctions where exposed electrodes and conductive pathways enter the implant interior. The description of this interface is considered challenging because electrochemically-diffusively coupled processes are involved. Furthermore, standard tests and specimens, with clearly defined 3-phase boundaries (body fluid-metal-polymer), are lacking. We focus on polymers as substrate and encapsulation and present a simple method to fabricate reliable test specimens with defined boundaries. By using silicone rubber as standard material in active implant encapsulation in combination with a metal surface, a corrosion-triggered delamination process was observed that can be universalised towards typical AIMD electrode materials. Copper was used instead of medical grade platinum since surface energies are comparable but corrosion occurs faster. The finding is that two processes are superimposed there: First, diffusion-limited chemical reactions at interfaces that undermine the layer adhesion. The second process is the influx of ions and body fluid components that leave the aqueous phase and migrate through the rubber to internal interfaces. The latter observation is new for active implants. Our mathematical description with a Stefan-model coupled to volume diffusion reproduces the experimental data in good agreement and lends itself to further generalisation.

13.
J Aerosol Med Pulm Drug Deliv ; 34(1): 32-41, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32716667

RESUMEN

Background: Developing new (triggered) or improving existing inhaler systems for (preterm) neonates and adults requires test benches for the determination of aerosol output and aerosol output rate. Furthermore, real-time measurement of aerosol output and output rate is advantageous with respect to both development costs and development time, especially when using liquid or humidified dry aerosols. The current standard test procedures following ISO 27427, however, are time-consuming. Moreover, these procedures are not applicable to inhalers for preterm neonates, due to their high breathing frequency, low tidal volume, and the dead space in commercially available test benches. We are describing a novel test bench approach combining gravimetric and optical detection to facilitate real-time measurement of aerosol output, aerosol output rate, and aerosol liquid water content in inhalation systems for (preterm) neonates and adults. Methods: We integrated a laser-based optical measurement unit into test benches for inhalers for adults and preterm neonates, based on ISO 27427. Breathing was simulated by a sine pump for adults and by a test lung for preterm neonates on continuous positive airway pressure respiratory support. Dry or humidified aerosol was released by a continuous powder aerosolizer system. Simultaneous particle measurement by gravimetry (filter) and light extinction (laser system) was performed using the novel test benches. Results: We developed test benches for inhalers for (preterm) neonates and adults in accordance with ISO 27427, combining optical and gravimetric particle detection. Optical and gravimetric measurements conducted with these test benches were highly correlated, thus enabling real-time measurement of aerosol output and output rate. In addition, our test benches are suitable to determine the aerosol water content in situ directly at the patient interface. Conclusion: This novel test bench allows characterization of inhalation devices in real time and therefore will accelerate optimization and development cycles. Conformity with ISO 27427 allows its use in various applications.


Asunto(s)
Nebulizadores y Vaporizadores , Agua , Administración por Inhalación , Adulto , Aerosoles , Humanos , Recién Nacido , Tamaño de la Partícula , Polvos
14.
ACS Sens ; 6(1): 100-110, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33337133

RESUMEN

In this article, we report on the development of a catheter-based, biomimetic sensor as a step toward a minimally invasive diagnostic instrument in the context of functional bowel disorders. Histamine is a key mediator in allergic and inflammatory processes in the small intestines; however, it is a challenge to determine histamine levels at the duodenal mucosa, and classical bioreceptors are unsuitable for use in the digestive medium of bowel fluid. Therefore, we have developed molecularly imprinted polypyrrole coatings for impedimetric sensing electrodes, which enable the quantification of histamine in nondiluted, human bowel fluid in a broad concentration range from 25 nM to 1 µM. The electrodes show negligible cross-sensitivity to histidine as a competitor molecule and, for comparison, we also evaluated the response of nonimprinted and taurine-imprinted polypyrrole to histamine. Furthermore, using equivalent-circuit modeling, we found that the molecular recognition of histamine by polypyrrole primarily increases the resistive component of the electrode-liquid interface while capacitive effects are negligible. The sensor, integrated into a catheter, measures differentially to correct for nonspecific adsorption effects in the complex matrix of bowel fluids, and a single triggering frequency is sufficient to determine histamine concentrations. Together, these features are beneficial for real-time diagnostic tests.


Asunto(s)
Impresión Molecular , Polímeros , Catéteres , Histamina , Humanos , Pirroles
15.
Sensors (Basel) ; 20(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227962

RESUMEN

Current personalized treatment of neurological diseases is limited by availability of appropriate manufacturing methods suitable for long term sensors for neural electrical activities in the brain. An additive manufacturing process for polymer-based biocompatible neural sensors for chronic application towards individualized implants is here presented. To process thermal crosslinking polymers, the developed extrusion process enables, in combination with an infrared (IR)-Laser, accelerated curing directly after passing the outlet of the nozzle. As a result, no additional curing steps are necessary during the build-up. Furthermore, the minimal structure size can be achieved using the laser and, in combination with the extrusion parameters, provide structural resolutions desired. Active implant components fabricated using biocompatible materials for both conductive pathways and insulating cladding keep their biocompatible properties even after the additive manufacturing process. In addition, first characterization of the electric properties in terms of impedance towards application in neural tissues are shown. The printing toolkit developed enables processing of low-viscous, flexible polymeric thermal curing materials for fabrication of individualized neural implants.


Asunto(s)
Materiales Biocompatibles , Rayos Láser , Impresión Tridimensional , Polímeros , Prótesis e Implantes
16.
Biosens Bioelectron ; 158: 112152, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32275205

RESUMEN

In this work, we report on the development of a catheter-based sensor designed for measuring the concentration of histamine in the human duodenum. Certain gut disorders, such as the irritable bowel syndrome (IBS), are associated with elevated levels of intestinal histamine due to chronic immune activation. As it is still impossible to determine histamine concentrations in vivo, a nasointestinal catheter with histamine-sensing capabilities has the potential to become a valuable diagnostic instrument. Regarding the sensing principle, we selected impedance spectroscopy using voltages that are compatible with intra-body applications with molecularly imprinted polymers (MIPs) as recognition elements. MIPs are synthetic receptors that offer the advantages of robustness, high specificity and selectivity for histamine as a target. In this specific case, the MIPs were synthesized from acryclic acid monomers, which guarantees a uniform binding capacity within the pH range of intestinal fluid. We have validated the catheter sensor on human intestinal liquids spiked with histamine in a testing setup that mimics the environment inside the duodenum. The dose-response curves show an analytical range between 5 and 200 nM of histamine, corresponding to physiologically normal conditions while higher concentrations correlate with disease. The key output signal of the sensor is the resistive component of the MIP-functionalized titanium electrodes as derived from the equivalent-circuit modelling of full-range impedance spectra. Future applications could be catheters tailored to cardiovascular, urological, gastrointestinal, and neurovascular applications. This, in combination with the versatility of the MIPs, will make this sensor platform a versatile diagnostic tool.


Asunto(s)
Técnicas Biosensibles , Catéteres , Impedancia Eléctrica , Histamina/metabolismo , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/metabolismo , Biomimética/instrumentación , Biomimética/métodos , Espectroscopía Dieléctrica , Electrodos , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Síndrome del Colon Irritable/etiología , Polímeros Impresos Molecularmente
17.
Biomed Phys Eng Express ; 6(5): 055006, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33444237

RESUMEN

This work presents a novel architecture, exemplified for electrophysiological applications like ECoG that can be used to detect Epilepsy. The new ECoG is based on a mixed analog-digital architecture (Pulse Amplitude Modulation PAM), that allows the use of thousands of electrodes for recording. Whilst the increased number of electrodes helps to refine the spatial resolution of the medical application, the transmission of the signals from the electrodes to an external analysing device appears to be a bottleneck. To overcoming this, our work presents a hardware architecture and corresponding protocol for a mixed architecture that improves the information density between channels and their signal-to-noise ratio. This is shown by the correlation between the input and the transmitted signals in comparison to a classical digital transmission (Pulse Code Modulation PCM) system. We show in this work that it is possible to transmit the signals of 10 channels with a analog-digital architecture with the same quality of a full digital architecture.


Asunto(s)
Encéfalo/fisiología , Electrocorticografía/instrumentación , Electrodos Implantados , Fenómenos Electrofisiológicos , Relación Señal-Ruido , Humanos
18.
Int J Artif Organs ; 43(5): 332-342, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31434531

RESUMEN

Today's best solution in compensating for sensorineural hearing loss is the cochlear implant, which electrically stimulates the spiral ganglion neurons in the inner ear. An optimum hearing impression is not ensured due to, among other reasons, a remaining anatomical gap between the spiral ganglion neurons and the implant electrodes. The gap could be bridged via pharmacologically triggered neurite growth toward the electrodes if biomaterials for neurite guidance could be provided. For this, we investigated the suitability of decellularized tissue. We compared three different layers (tunica adventitia, tunica media, and tunica intima) of decellularized equine carotid arteries in a preliminary approach. Rat spiral ganglia explants were cultured on decellularized equine carotid artery layers and neurite sprouting was assessed quantitatively. Generally, neurite outgrowth was possible and it was most prominent on the intima (in average 83 neurites per spiral ganglia explants, followed by the adventitia (62 neurites) and the lowest growth on the media (20 neurites). Thus, decellularized equine carotid arteries showed promising effects on neurite regeneration and can be developed further as efficient biomaterials for neural implants in hearing research.


Asunto(s)
Arterias Carótidas , Implantes Cocleares , Pérdida Auditiva Sensorineural/terapia , Regeneración Nerviosa/fisiología , Ganglio Espiral de la Cóclea , Andamios del Tejido , Animales , Materiales Biocompatibles/uso terapéutico , Arterias Carótidas/citología , Arterias Carótidas/fisiología , Arterias Carótidas/trasplante , Células Cultivadas , Caballos , Ratas , Ingeniería de Tejidos/métodos
19.
J Breath Res ; 10(4): 046003, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27677188

RESUMEN

The prognosis in lung cancer depends largely on early stage detection, and thus new screening methods are attracting increasing attention. Canine scent detection has shown promising results in lung cancer detection, but there has only been one previous study that reproduces a screening-like situation. Here breath samples were collected from 122 patients at risk for lung cancer (smokers and ex-smokers); 29 of the subjects had confirmed diagnosis of lung cancer but had not yet been treated and 93 subjects had no signs or symptoms of lung cancer at the time of inclusion. The breath samples were presented to a trained sniffer dog squadron in a double-blind manner. A rigid scientific protocol was used with respect to earlier canine scent detection studies, with one difference: instead of offering one in five positive samples to the dogs, we offered a random number of positive samples (zero to five). The final positive and negative predictive values of 30.9% and 84.0%, respectively, were rather low compared to other studies. The results differed from those of previous studies, indicating that canine scent detection might not be as powerful as is looked for in real screening situations. One main reason for the rather poor performance in our setting might be the higher stress from the lack of positive responses for dogs and handlers.


Asunto(s)
Pruebas Respiratorias/métodos , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Cohortes , Perros , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
20.
ACS Appl Mater Interfaces ; 8(12): 8239-46, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26967063

RESUMEN

The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.


Asunto(s)
Rayos Láser , Oxígeno/química , Gases em Plasma/química , Elastómeros de Silicona/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...